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Introduction: 

In 1993, members of our team collaborated with Silicon Graphics to perform the first full-scale 
demonstration of the computational power of the SMP cluster supercomputer architecture [l]. That 
demonstration involved the simulation of homogeneous, compressible turbulence on a uniform grid of a 
billion cells, using our PPM gas dynamics code [2-51. This computation was “embarrassingly parallel,” 
the ideal test case, and it achieved only 4.9 Gflop/s performance, slightly over half that achievable by this 
application on the most expensive supercomputers of that day. After four to five solid days of 
computation, when the prototype machine had to be dismantled, the simulation was only about 20% 
completed. Nevertheless, this computation gave us important new insights into compressible turbulence 
[6,7] and also into a powerful new mode of cost-effective, commercially sustainable supercomputing [S]. 
In the intervening 6 years, the SMP cluster architecture has become a fundamental strategy for several 
large supercomputer centers in the U.S., including the DOE’S ASCI centers at Los Alamos National 
Laboratory and at the Lawrence Livermore National Laboratory and the NSF’s center NCSA at the 
University of Illinois. This SMP cluster architecture now underlies product offerings at the high-end of 
performance from SGI, IBM, and HP, among others. Nevertheless, despite many successes, it is our 
opinion that the computational science community is only now beginning to exploit the full promise of 
these new computing platforms. In this paper, we will briefly discuss two key architectural issues, vector 
computing and the flat multiprocessor architecture, which continue to drive spirited discussions among 
computational scientists, and then we will describe the hierarchical shared memory programming 
paradigm that we feel is best suited to the creative use of SMP cluster systems. Finally, we will give 
examples of recent large-scale simulations carried out by our team on these kinds of systems and point 
toward the still more challenging work which we foresee in the near future. 

Vector or Scalar Computation on a Single CPU? 

Computational scientists and numerical algorithm specialists still argue over the benefits of vector 
versus scalar computation on a single CPU. These disagreements are reflected in hardware offerings as 
well, but in the U.S., mainstream microprocessor manufacturers are designing CPUs principally with the 
goal of rapid execution of scalar code. These CPUs acknowledge certain mainstream commercial 
applications, such as signal processing and compression/decompression of multimedia data streams as 
well as interactive 3-D graphics for CAD applications, Hollywood movies, and, more importantly, 
computer games, that vectorize in a natural way. However, these specialized vector applications do not 
require high floating point precision. These processors therefore support short, low-precision vector 
operations, but the usefulness of this hardware functionality for scientific computing applications familiar 
from the heyday of vector supercomputers in the U.S. (in the 1980’s) is unclear. 

In the realm of scientific computation, the vector versus scalar argument hinges on the fact that 
vector code, if a useful algorithm can be formulated in this way, relatively easily achieves half the peak 
potential CPU performance. For specialized linear algebra applications, vector code can come close to 
the peak potential of the CPU. The problem is that not every useful algorithm can be formulated in terms 
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of code that is overwhelmingly of a vector nature. Once scatter-gather instructions enter the mix, 
performance tends to plummet (although this performance degradation is algorithm dependent). 
Additionally, the most favored applications, the dot products involved in linear algebra, perform at peak 
rates on CPUs of either type, whether vector or scalar. ln the U.S., this vector versus scalar issue is being 
driven by powerful commercial forces beyond the control of even the wealthiest scientific communities. 
Apparently, outside of science there are not very many applications written in vector format (save of 
course the signal processing and graphics applications already noted). This situation is ameliorated by the 
fact that modern RISC CPU design is fundamentally based upon pipelining, the core technology behind 
vector computing. 

The pipelined RISC CPU architecture assures that, so long as a scalar code presents to the CPU a 
sufficient frequency of executable flops within its instruction and data streams, performance should come 
close to that of vector code. Achieving near vector performance on scalar code apparently requires lots of 
registers, out of order instruction execution, speculative execution after branches, and the like - all 
standard tricks of today’s highly sophisticated microprocessors. Assuming that the CPU has enough 
registers to keep temporary results within a moment’s access range, and assuming that it also has a large, 
fast cache memory to draw upon, multiple iterations of a loop body, or even more general multiple 
threads, can be executed simultaneously in order to present within the combined instruction stream 
enough executable flops to keep functional units busy. In the 1970’s, when vector computing was first 
introduced, vector performance was to be compared to that of relatively unsophisticated scalar processors 
without the benefit of cache memories (unless we consider the small core memory of the CDC 7600 as a 
cache). With such unsophisticated competition, vectors were a clear win. Today, however, the competi- 
tion makes for a much closer call. The comparison is also algorithm dependent, as the older among us 
will remember that it was in the 1970’s. The reason for this algorithm dependence is the fact that in order 
to force computation into a vectorizable mode it is usually necessary to perform unnecessary arithmetic. 
For the PPM gas dynamics codes we use, vectorization requires between 50% to 100% additional 
arithmetic, even for an ideal, embarrassingly parallel fluid dynamics problem [8,9]. 

Over the last few years, the scientific computing community has become familiar with the program 
structure requirements of cache-based microprocessors. In general, one needs to “block” numerical 
algorithms, so that a great deal of work is performed on a contiguous subset of the overall data while it 
resides in the cache memory. This is not the natural structure of a vector program, since it tends to result 
in relatively short vector lengths. However, it is the means of reducing demands on the bandwidth of the 
memory that is shared among the multiple processors in any of today’s powerful computing systems. As 
more and more scientific computing applications are converted to such blocked numerical algorithms, it 
becomes harder and harder to find compelling examples for the preservation of classic vector computing. 
This conversion is not now complete, but it is progressing rapidly, at least in the United States. A 
conversion that is less rapid is one to truly scalar algorithms that no longer attempt to find compromise 
numerical treatments to make, for example, grid cells with shocks look mathematically like grid cells 
without them, or grid cells with multiple fluids look in some sense like single-fluid cells. Once one 
decides that it is no longer necessary to maintain a code that will run well on vector computers, the far 
more potentially accurate and powertil numerical algorithms that are truly scalar become available for 
consideration. This potential trove of powerful new algorithms is becoming practical just as super- 
computing systems are attaining true, sustained teraflop/s computational capability, permitting the far 
more complex physical simulations that can best make use of the new algorithms. 

Flat MPP Architecture or Cluster of SMPs? 

A second architectural issue capable of driving earnest and extended arguments within the scientific 
computing community today is the one of CPU equality or CPU hierarchy. The first multiprocessor 
machines had so few CPUs that it was pointless to arrange them hierarchically. In the 2-, 4-, 8-, and 16- 
processor vector machines of the 1980’s and early 1990’s in the U.S., every processor was equal. This 
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architecture of CPU equality was extended in a wide variety of machines known as massively parallel 
processors. or MPPs. Well-known examples from the U.S. industry are the Connection Machines, the 
lntel Paragons, the Cray T3Ds and T3Es, and the IBM SP-1. Even though the programmer might lay out 
these processors meaningfully in his or her program to form a 2-D or 3-D torus, for example, the 
advertised concept was that the processors were capable of all being treated equally. None had preferred 
access to any memory other than its own local one; or at least it was supposed to be possible to write an 
efficient program assuming that this was so. This was really a very appealing concept. However, its 
appeal tends to fade as the number of processors increases into the hundreds or thousands and, particular- 
ly, as one begins to attack dynamically irregular scientific computing problems on the machine. Dynamic 
load balancing on such MPP platforms with over 500 processors is a rare feat, requiring a programming 
tour de force. 

The SMP cluster architecture arose from two movements. First was one of building highly cost 
effective microprocessor-based machines along the symmetric multiprocessing lines of the early multi- 
processor vector machines. These new microprocessor-based machines were not positioned as super- 
computers. since their CPUs were much slower than those of the vector machines, and the number of 
these processors available in a single machine (up to 36) was small compared to the number available in 
MPPs of that day (up to 5 12 or even 1024). However, these early machines were relatively low cost bus- 
based SMPs (symmetric multiprocessors), relatively easily programmed, and capable of supporting time- 
sharing (as opposed to MPP “space sharing”) through the Unix operating system. These advantages 
translated into brisk sales, which placed these machines in the commercial mainstream and thus made 
them candidates for clustering. 

As these microprocessor based SMPs appeared, many groups were building low cost computing 
systems out of clusters of single-processor workstations interconnected by Ethernet or FDDI networks. 
Eight or 16 machines in a cluster was a typical configuration. These low cost systems produced about the 
computing capability, for carefully structured application codes using message passing libraries, of a 
single vector processor of the day. None of these systems at that time could compete in capability with, 
say, a 16-processor Cray C-90 vector supercomputer. However, the same programming and network 
interconnection techniques could be used to build a cluster of SMPs. Members of our team worked with 
Silicon Graphics (SGI) in 1993 to do just that [I]. We built a cluster of 16 machines, each with 20 
processors, interconnected in a 3-D toroidal topology by 20 FDDI rings. On our PPM code, this system 
delivered 4.9 Gflop/s sustained performance. To our knowledge, this was the first cluster system that 
delivered true supercomputer performance. Using a high-end, mainstream commercial system as the unit 
of replication in a cluster was the key to achieving supercomputer performance at relatively low cost, 
while still leveraging the software and inexpensive peripherals driven by the commercial market. Perhaps 
ironically, this idea has served the DOE’S ASCI program well in procuring the most expensive and most 
capable systems now in use in the U.S. A simplified version of our PPM code, called sPPM [lo], has 
been used as the performance benchmark for these ASCI program procurements, and as a result it has 
been run in 1998 at 1 Tflop/s sustained performance. 

With the weight added in the U.S. by the ASCI program, it would seem that the SMP cluster 
architecture has become a clear winner. However, MPP fans still abound within the scientific computing 
community. We argue below that the true power of SMP cluster computing is the ease that it offers for 
dynamic load balancing in highly irregular computations. This potential still remains to be tapped in most 
of the classic areas of computational science. The exposition below will hopefully serve to inspire 
readers to go out and tap it for themselves, and through that effort to cement the gains that this new 
supercomputer architecture has by now achieved. 

The SMP (or DSM) Cluster Programming Challenge: 

Today’s high-end computing platforms from U.S. vendors, DSM and SMP cluster systems, combine 
deep memory hierarchies in both latency and bandwidth with a need for many-hundred-fold to several- 
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thousand-fold parallelism. Users of these systems have had to meet these challenges to efficient parallel 
program design armed only with minimal system software: Fortran, C, MPI, and support for POSIX 
threads on a network node. OpenMP is, a promising new standard which can be used to generate portable 
code for a single DSM or SMP machine, but it does not address the cluster as a whole. Programming for 
dedicated cluster systems would be difficult enough, however DSM cluster systems are usually 
administered in order to optimize throughput, so that a mix of jobs of different sizes is set running at any 
given time. It is therefore very difficult to obtain for a single large job even an entire 12%processor 
machine, let alone a cluster of such machines. In order to run efficiently in this context, we restructured 
our PPM gas dynamics program so that it could dynamically adjust the number of processors it used on 
any single DSM machine of the cluster. This allowed the code to coexist with a time varying mix of other 
jobs. Our code’s task manager continually entered requests into multiple job queues, adding any 
processors that were made available through this mechanism to the ongoing team. So far we have used 
this restructured code for problems with a regular structure, adapting to irregular processor loads from 
other users. However, it will be no additional difficulty to have this code dynamically adjust processor 
loads as a result of dynamically changing computational loads from regions of our own problem domain. 
The techniques that we have used to accomplish this code restructuring are outlined below. They are very 
general and should apply equally well to many other computational problems. 

Hierarchical Shared Memory: 

Our first versions of our PPM gas dynamics code, like the sPPM benchmark code that we wrote for 
the DOE’S ASCI program, used thread-based shared memory multitasking within each DSM machine and 
MPI message passing over the DSM cluster. Not only was this hybrid coding technique clumsy, but it 
also made load balancing over the cluster network difficult. Following ideas presented in [7], our present 
approach extends to the entire cluster the shared memory multitasking approach that we use within each 
DSM machine. The key to this kind of parallel program is to decompose the work of the program into a 
sequence of tasks each of which requires only data from a restricted and compact data context and each of 
which can be executed from this data context without the need to communicate with any other task. This 
is a shared memory paradigm; tasks do not communicate directly with each other, but instead they read 
and write shared memory data structures. If we wish, we can think of the task’s data context as including 
within it “messages” that have been written there by other tasks. This message passing through the 
intermediary of shared memory is, however, much simpler than message passing directly between 
ongoing processes. No message receiver ever need know the identity of the message sender, and vice 
versa. There is also no need for message buffering, since the data structures in shared memory are pre- 
allocated. It is still a good idea, of course, to write data needed by other tasks as soon as this data is 
generated and to read data supplied by other tasks at the latest possible moment. Synchronization of this 
form of message passing is therefore still required, although it is generally much simpler. In our code, we 
accomplish this synchronization by having each task set a semaphore variable in shared memory 
indicating when the task has been completed. (To avoid performance degradation due to false sharing, 
each semaphore must have its own cache line in memeory.) Tests on these task completion semaphores 
are performed before each task launch, so that a task once begun knows that it is safe to do all its work 
without further inquiry. The art of writing such programs is to order the list of tasks very carefully so that 
at any point in the program a very large number of tasks near that point in the sequence can be executing 
in parallel. 

So far, the strategy of task parallelism outlined above should be familiar. This is the method for 
constructing parallel programs for SMPs. For DSM machines, there is one further detail. The non- 
uniform memory access of the DSM architecture forces the programmer to take the trouble of copying 
into the local memory of the executing processor elements of the task data context that will be over- 
written. Any intermediate data generated by the task that will not be written into shared memory for other 
tasks to read must also be placed in the local memory of the executing processor. In Fortran, this local 
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memory placement is easily accomplished. The task is merely encapsulated in a subroutine (subroutine 
linkage is a negligible cost for any task with a hope of being efficient), and the data that must be local is 
dimensioned locally, so that it will be placed by the compiler on the subroutine stack (which is always in 
the best possible memory). This placement of the task work space in local memory eliminates the 
phenomenon of “false sharing” and greatly improves performance. Note that it is unnecessary to know 
which processor will execute the task. The subroutine stack will transparently be put in the right place. 

Our program consists of a hierarchical set of task lists. The first set is a list of tasks intended for 
execution by entire machines of the cluster. These tasks, which we will call DSM tasks, are themselves 
composed of lists of smaller tasks, which we will call CPU tasks. A CPU task is encapsulated in a 
subroutine and is written for execution by a single CPU. DSM tasks are encapsulated in subroutines that 
are explicitly multithreaded for parallel execution. We make each task conform to a template consisting 
of three steps: (1) reading the task data context into the local, private task work space, (2) operating on 
the data context, and (3) writing data back into shared data structures. CPU tasks enjoy relatively large 
data bandwidth to the shared memory of their DSM machines, so they may perform these three task 
stages sequentially without significant loss of performance. (Machines that do not support this mode of 
task operation are difficult to sell and therefore are difficult to find.) However, DSM tasks do not enjoy 
high bandwidth access to the memory of other cluster members (or to shared disks). Therefore, steps 1 
and 3 above must be overlapped with step 2. That is, the data for the next DSM task must be prefetched 
during the execution of the present DSM task. Also, the data produced by this DSM task must be written 
back to shared data structures during the execution of the next DSM task. This can be accomplished by 
encapsulating these data transfers in separate DSM tasks, with the obvious constraint that they must be 
executed by the same DSM that performs the real computational work of the DSM task to which they 
correspond. In our implementation, we have constructed memory server daemons that run on each DSM 
machine of the cluster and which asynchronously fulfill requests to “put” and “get” contiguous sections of 
arrays registered with them as globally accessible. We have coordinated the DSM tasks through a task 
manager process, which has only a single thread. 

Hierarchical Shared Memory Parallel Implementation of PPM at NCSA: 

We restructured the PPM gas dynamics code according to the hierarchical shared memory strategy 
outlined above. Memory server daemons were created to read and write a fast Fibre Channel network- 
attached disk system of our own design. Two 12%processor Silicon Graphics Origin-2000 machines at 
NCSA, interconnected by a single fast Ethernet, shared a common file system on 48 Seagate Fibre 
Channel disks supplied by LCSE industrial partner MTI. Each machine was connected to all 48 disks via 
4 Fibre Channel loops. Each machine was connected to the disks through its own set of ports (the disks 
were dual ported). Read/write bandwidth from the PPM application from each machine was in excess of 
270 MB/s, sustained, even when both machines accessed the disks simultaneously. Control information, 
such as DSM task completion semaphores, was passed via MPI over the fast Ethernet link. 

This restructured PPM code was used to simulate Mach 2 homogeneous, compressible turbulence 
on a billion-cell ( 10243) uniform grid. A typical task for a single CPU was to update for a single 1-D pass 
a grid pencil of 4x4~256 cells. A typical task for a single 128-processor Origin-2000 machine was to 
update for six 1-D passes, or 2 time steps, a 256x256~512 brick of grid cells. The active data context for 
the job consisted of 32 old and 32 new grid brick records stored on the 864 GB shared Fibre Channel disk 
system. Each grid brick record of 954 MB consisted of 27 separate records: the brick interior (640 MB), 
6 brick face records (27.5 MB each), 12 brick edge records (2.4 MB each), and 8 brick corner records 
(200 KB each). The active memory context in each participating DSM machine consisted of 5 grid brick 
records, or about 5 GB out of the 64 GB of DSM memory in each machine. 

During each grid brick update, the Origin-2000 was asynchronously prefetching the next grid brick 
record and writing back the results of the previous grid brick update to 27 different grid brick records on 
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adjustment interval was about 2.5 seconds. Both machines were shared dynamically with other users, and 
PPM benefited by inserting requests for CPUs in several batch queues, grabbing the CPUs as they became 
available for this single, large computa&on. The small departures from full resource utilization that are 
shown reflect system functions performed by the operators, not any failure of PPM to exploit these 
opportunities. 

Reevaluating this Demonstration Code for Parameters of the IBM SP System: 

Our sPPM benchmark code indicates that, within a couple of per cent, the delivered performance of 
a PowerPC 604e microprocessor running at 333 MHz is equivalent to that of a MIPS RlOK processor 
running at 195 MHz. Therefore, one SMP of 4 such PowerPC CPUs is about 32 times less powerful than 
a 128-CPU Origin-2000 for our PPM code. Hence we should reduce the computational labor involved in 
a single DSM task of the PPM code by about a factor of 32 in order to run well on this platform. We can 
do this by reducing the brick volume by factor of 8, resulting in a brick of 128x 128x256 cells, and by 
performing only a single 1-D sweep rather than 6 per task. This DSM task should now take 15x32/48 = 
10 sec. Because we are performing only a single 1-D sweep, the data reuse in this task is 6 times less than 
on the Origin-2000. However, the ratio of “cluster” network bandwidth to DSM processing speed is now 
4x25/600 = l/6 Bytes/flop. This is 12 times greater than for the Origin-2000 at NCSA. As a result, the 
PPM code should run on this system even more efficiently. However, of course, in this model the entire 
problem data context must reside in the relatively expensive system memory rather than on relatively 
inexpensive Fibre Channel disks. A form of overhead for the parallel code is redundant computation 
performed in “ghost” cells surrounding each grid brick. The fraction of the computation time devoted to 
this redundant work would have remained the same as in the NCSA run if we had performed three rather 
than just one sweep per DSM task. We have thus reduced the redundant computation overhead by a 
factor of (278*x534 - 256*x5 12)/(8x( 130*x263 - 128*x256)) = 3.9 and the efficiency of the job should 
therefore be even greater. We note that these projections are merely educated guesses, and they do not 
incorporate any consideration of problem I/O. They nevertheless suggest that our parallel programming 
model might be portable to systems with fairly dramatically different parameters than the Silicon 
Graphics Origin cluster at NCSA. 

Reevaluating this Demonstration Code for Parameters of the HP System: 

We presently await results of tests that are underway with the cooperation of HPpersonnel and of 
the computing center at Caltech. 
Assumptions that Permit Efficient DSM Cluster Programs: 

It is tempting to speculate that perhaps all codes aimed at the simulation of physical systems on 
grids could be implemented in the above fashion. As a result, we have attempted to abstract those char- 
acteristics of our PPM code that we feel are essential in enabling this restructuring. We state them here in 
the form of assumptions that we believe are necessary for such hierarchical shared memory parallel 
program execution. First, we assume that a job can be decomposed into a set of tasks that can be 
executed independently, so long as certain previous tasks are completed at task launch. We further 
assume that each task can be made to conform to a model, or template, in which: 
1) possibly remote data is copied into local memory, 

2) this data is operated upon mightily, 

3) a few results are written back to possibly remote storage. 

We assume that the tasks can be constructed so that, in general, the larger the data context for the 
task, the larger the amount of potential data reuse. This assumption is necessary to accommodate low 
cluster bandwidths. To accommodate large cluster latencies we must also assume that the task data 
contexts can be constructed so that they may be read or written back in only a small number of sequential 
data transfers. Once in fast local memory, these data contexts can be efficiently reorganized if necessary. 
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We assume that global barriers (Amdahl’s Law) can be avoided by providing greater system 
resources and/or by minor modifications of the numerical algorithm. Examples of this principle abound. 
For example, a program may require all processing to stop so that an image of the problem can be written 
to a restart file on disk. However, if additional system memory is provided, this restart dump can be 
written asynchronously without impeding the program flow. Another program might require that a global 
reduction operation be performed after a time step is completed in order to determine the value of the next 
time step. However, if enough memory is provided to store the previous problem state, we may guess the 
time step value (the minimum of the previous 25 time steps might be a good guess) and proceed specula- 
tively. In the rare event that we guess badly, the saved system state will permit us to recover. As a final 
example, we may be performing an implicit calculation that appears to require global information to be 
assembled in order to update the value of a variable at a single spatial location. By revising the numerical 
algorithm slightly, we could require up-to-date information only for the local region and use information 
from the previous time step or iteration for the more distant data. Once again, this would require a 
commitment of additional system memory to the job. 

Feasibilitv Requirements: 

There are bandwidth requirements for the cluster network, but essentially no meaningful latency 
requirements. The bandwidth requirements are determined by the demand that any computing resource 
should be able to execute any task, regardless of the location of its data context. Data prefetching and 
asynchronous write back are absolutely essential. The task manager should have limited intelligence to 
avoid stupid data movement. It should dynamically reorder the task list, permuting elements that are 
equally or nearly equally qualified candidates for the next task to be launched, taking data location over 
the network into account. Finally, local memory for various computing resources must be sufficient to 
accommodate data contexts offering sufficient data reuse, but this is not a new requirement. 

Relation to Other Work: 

Many investigators have been concerned in recent years with enabling shared memory programs to 
execute on cluster systems. Some of the early work in this area led directly to the development of 
distributed shared memory (DSM) machines, particularly the work of the Stanford team led by John 
Hennessy (cf. Kuskin et al. 1994). More recent contributions (see reference list) have focused on 
software systems that create from a cluster of machines the practical effect, rather than simply a research 
prototype, of a DSM machine. Much of this work, although not all, has focused on clusters of single- 
processor machines and therefore features only a single level of the two-level shared memory discussed in 
the present work. Also, much of the work has involved very tine granularity of software shared memory 
access, often based on machine memory pages. In this respect this work stands in contrast to the 
approach advocated here. Some of the recent work on out-of-core computation algorithms, particularly 
that of Salmon and Warren (1997) and Nieplocha and Foster (1996) involves concepts relevant to the 
work presented here. A feature that this out-of-core work, particularly that of Salmon and Warren, shares 
with our own is the emphasis on restructuring the numerical algorithm to function well in the new mode. 
The work presented here is based on ideas set out in Woodward (1996). Continually updated lists of 
references to work on SMP cluster computing can be found on the “clumps home page,” at 
http://now.cs.berkeley.edu/clumps, and through links maintained on that page. 







simulations of the same problem and by the 
data shown below. The main point we would 

: 

like to stress here is that on this grid of 8 
billion cells, we are finally at a point where 
we are able to resolve in this single 
computation both the primary, long wave- 
length behavior of the Richtmyer-Meshkov 
instability and also the secondary, short 
wavelength behavior of the turbulence that 
grows out of the shear which this instability 
produces. 
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,w-12 I- This sPPM simulation was carried out 

1 10 100 1000 ,oooo WWSl”lIlbW on a brand new computing system, which - k-d3 --.---- 204x2043x1520 ~- --- ~024x1024x1024 therefore did not possess all its planned 
-.-.-.-._ .&jX3&qX~4 support systems of disks, archival storage, 

Figure 3. Longitudinal velocity power spectra. and visualization hardware. As a result, we 
were able to archive only 10 full-information 

snap shot tiles, each compressed by a factor of 2 to represent each number in only 16 bits. Each of these 
files was 84 GB in size, so this is still nearly a TB of information. However, based upon preliminary runs 
of this same problem at lower grid resolution, we determined a single variable, related to the entropy of 
the gas, and a scaling of this variable to 255 intensity levels, that we wished to save in more complete 
form. Each snap shot for this single entropy variable was only 8 GB, which made it possible to archive 
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Figure 4A, B. Solenoidal (top) and compressional (bottom) velocity power spectra of decaying turbulence. I 
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a factor of 2 in each dimension, the power spectra remain unchanged. This demand of convergence -of the 
power spectra can of course not be applied in the Euler case, since a grid refinement reduces the effective 
viscosity of the flow by a factor of 8 (for PPM). The Navier-Stokes runs were carried only to a grid of 
512’. at which resolution there is still no Kolmogorov inertial range at all for this flow. Nevertheless, the 
trend of these curves - for grids of 643, 1283, 2563, and 5123 - indicates that with a grid of about 40963 
we would see such a region of the spectrum with about the same extent in wavenumber as the Euler 
approach gives us with only lO243 cells. 

The billion-cell Mach % turbulence calculation gives an enchanting, detailed view of the develop- 
ment of a turbulent flow. The instability of originally smooth vortex sheets to form systems of vortex 
tubes and the subsequent braiding of these tubes about each other is clearly seen. Figure 5, above, gives a 
glimpse of this fascinating process when it is about half-way along, and Figure 6 shows volume 
renderings of three variables, the vorticity magnitude, the divergence of the velocity, and the entropy, a 
bit earlier in the simulation. 

Simulating Turbulence Driven by Convection, which in turn Interacts with Stellar Pulsation: 

In a number of PPM simulations using NCSA’s Silicon Graphics DSM cluster, we have explored 
the interaction of turbulence with thermal convection, and of this turbulent convection in turn with either 
rotation or pulsation. This work began with our participation in an NSF-funded Grand Challenge team 
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ti entire model star. Our first simulations, begun 
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in the fall of 1996, used a model star which 
was chosen to explore the interaction of 
convection with rotation. This calculation 
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1 10 ,00 the star which used a multifluid algorithm 
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based on the SLIC algorithm of Noh and 
Woodward [12], but with gravity serving to 

Figure 8. The radial velocity power spectrum from the middle oj make the interface between the stellar gas and 
the convective envelope of our model giant star is here analyzed the second “fluid” (vacuum) stable. The 
in terms of spherical harmonic modes. Note the dominance oj escape of heat through this surface was treated 
the dipole mode and the Kolmogorov power-law behavior at 
higher wavenumbers (indicated by the straight line). The slight 

rather crudely, however, with the time- 

flattening of the spectrum toward the highest wavenumbers, just 
averaged surface heat flux forced to match the 

before the dissipation range, is a feature we have seen in every constant rate at which heat was introduced into 
compressible, turbulentjlow we have simulated. the stable central region of the model star. 

I In the fall of 1997, we used the same 
multifluid, 3-D Cartesian PPM code at NCSA to simulate pulsating stars. In our most recent simulation, 
we chose a luminous model star to drive very rapid, vigorous convection. In this case, we set up the 
unperturbed stellar model without rotation but with a very deep convection zone as is found in giant stars. 
In order to resolve it on the computational mesh, we enlarged the convectively stable, hot stellar core to 
about 10% of the stellar radius. In a typical giant star, the hot, stable core would have a radius compar- 
able to that of the earth while the convective envelope around it would have a radius comparable to that of 
the orbit of the earth about the sun. We artificially reduced this tremendous dynamic range in our 
simulation, keeping the stellar core small but still resolvable. In Figure 7, above, we see two volume 
renderings of our simulated giant star convective envelope. At the left, we have made the envelope 
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relatively opaque, so that we see the surface features, while on the right we have made the envelope 
sufficiently transparent that we may see right through it to the hot stellar core within. In both renderings, 
we show the temperature fluctuations relative to average temperatures on each isopressure surface. Red 
and yellow represent warm and hot temperatures, while blue and aqua represent cool and cold ones. 

Aside from the pulsation of this model giant star envelope over a range of about +lO% in radius, 
the biggest surprise of this calculation, as with our first such simulation in 1997, was the prominence of 
global modes of convection. Treatments of convection for evolution calculations for stars of this type 
assume that the convection can be characterized by mixing length models which involve only local 
parameters. However, this simulation reveals a propensity for global modes of convection. In fact, 
animated sequences of images like these reveal a general dipolar flow pattern, with relatively cool gas 
descending toward the core from the left in Figure 7B, becoming heated while passing over the core at 
about a fifth of the local sound speed, and rising as relatively warm gas to the right in the figure. 

The deep convection in the model giant star envelope that we have been discussing has provided us 
with a fully developed thermal convection flow with 5 pressure scale heights over which the special 
conditions of either the upper or the lower boundaries exert no major effects. In this flow the periodic 
boundary conditions in the “horizontal” directions are not at all artificial, but instead simply express the 
overall spherical geometry of the problem. Here we have, as in the Richtmyer-Meshkov problem, 
turbulence driven by a real physical process which is itself simulated in complete detail within the 
calculation. In contrast to the Richtmyer-Meshkov example, however, this thermal convection flow is 
statistically steady, except of course for the periodic radial pulsation of the envelope as a whole. This 
PPM simulation on a 512’ grid was carried out over about 20 pulsation periods, so that the flow has had a 
good deal of time to relax. Velocity power spectra of the flow near the middle of the envelope (middle 
values of the radius) are shown in Figure 8. Once again, the longest wavelength modes are characteristic 
of the driving physical process and there is a turbulent Kolmogorov inertial range, in this case rather 
short. Again there is a flattening of the power spectra in the near dissipation range followed by a dramatic 
steepening as the turbulence is dissipated at the highest wavenumbers. In this simulation, not only is the 
nonlinear interaction of the small scale turbulence with the convection flow treated in detail, but the 
nonlinear interaction of the dipolar convection flow with the global radial pulsation is accounted for as 
well. We are beginning a new series of such giant star simulations incorporating more realistic models of 
the gas equation of state, including gas ionization effects, and improving our treatment of the escape of 
heat from the stellar surface. 

Conclusions: 

The new generation of powerful DSM and SMP cluster computers enables simulations of fluid dynamics 
at sufficient resolution to compute the complex nonlinear interactions of small-scale turbulent motions 
within a large-scale driving flow. With a new programming model of hierarchical shared memory multi- 
tasking, it is possible to exploit these new systems without disrupting the flow of small and medium-sized 
jobs that makes their existence possible. 
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